人形機器人決策難度更G:決策層依據感知層獲取的信息進行決策判斷,來控制機器人身體做出動作規劃 并下發指令。特斯拉人形機器人與FSD底層模塊打通,一定程度上算法可復用,但人形機器人需完成人類 各種動作,動作連續復雜、需頻繁的物理交互且操作因果性多,算法難度遠G于自動駕駛。
⚫ ChatGPT助力拆解任務:大語言模型擅長推斷語言條件,并利用其代碼編寫能力,拆分任務,給出運動規劃的 目標函數。
⚫ 實時反饋以便調整動作:依據感知系統的反饋,可實時調整動作規劃,并執行
| 資料獲取 | |
| 服務機器人在展館迎賓講解 |
|
| 新聞資訊 | |
| == 資訊 == | |
| » 觸覺傳感器行業首次覆蓋:無觸不成手,觸覺 | |
| » 2025人形機器人產業鏈市場洞察及方案介 | |
| » 把 AI 放到指數位—2025新思維 | |
| » 機器人如何鎖定目標說話人:聲紋識別,空間 | |
| » 機器人語音交互的智能打斷的方式:發聲即打 | |
| » 多輪對話的基本原理:采用 RTC 技術低 | |
| » 老年人陪伴機器人關注的重點:表達能力 > | |
| » WebSocket在實時對話中存在關鍵缺 | |
| » 機器人互動如何做好上下文:短期記憶,固化 | |
| » 2025對話式AI發展白皮書-技術模塊, | |
| » 2025機器人企業創新50強 | |
| » 機器人的動力學:拉格朗日法 | |
| » 機器人的運動學模型:運動學模型和動力學模 | |
| » 機器人的傳動機構:有絲杠傳動機構、齒輪傳 | |
| » 機器人的移動機構:車輪式移動機構;履帶式 | |
| == 機器人推薦 == | |
服務機器人(迎賓、講解、導診...) |
|
智能消毒機器人 |
|
機器人底盤 |
![]() |